Search results for "SPIN CHAIN"
showing 10 items of 15 documents
Spin chains for two-qubit teleportation
2019
Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is able to sustain the generation of two pairs of Bell states - possibly shared between a sender and a distant receiver - which can in turn enable two-qubit teleportation. In particular, we address a spin-1/2 chain with XX interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has vanishing inf…
Asymptotics of correlation functions of the Heisenberg-Ising chain in the easy-axis regime
2016
We analyze the long-time large-distance asymptotics of the longitudinal correlation functions of the Heisenberg-Ising chain in the easy-axis regime. We show that in this regime the leading asymptotics of the dynamical two-point functions is entirely determined by the two-spinon contribution to their form factor expansion. Its explicit form is obtained from a saddle-point analysis of the corresponding double integral. It describes the propagation of a wave front with velocity $v_{c_1}$ which is found to be the maximal possible group velocity. Like in wave propagation in dispersive media the wave front is preceded by a precursor running ahead with velocity $v_{c_2}$. As a special case we obta…
Partition function of the trigonometric SOS model with reflecting end
2010
We compute the partition function of the trigonometric SOS model with one reflecting end and domain wall type boundary conditions. We show that in this case, instead of a sum of determinants obtained by Rosengren for the SOS model on a square lattice without reflection, the partition function can be represented as a single Izergin determinant. This result is crucial for the study of the Bethe vectors of the spin chains with non-diagonal boundary terms.
Transport of Quantum Correlations across a spin chain
2012
Some of the recent developments concerning the propagation of quantum correlations across spin channels are reviewed. In particular, we focus on the improvement of the transport efficiency obtained by the manipulation of few energy parameters (either end-bond strengths or local magnetic fields) near the sending and receiving sites. We give a physically insightful description of various such schemes and discuss the transfer of both entanglement and of quantum discord.
Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2
2016
We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…
Multipartite entanglement transfer in spin chains
2020
We investigate the transfer of genuine multipartite entanglement across a spin-1/2 chain with nearest-neighbor XX-type interaction. We focus on the perturbative regime, where a block of spins is weakly coupled at each edge of a quantum wire, embodying the role of a multiqubit sender and receiver, respectively. We find that high-quality multipartite entanglement transfer is achieved at the same time that three excitations are transferred to the opposite edge of the chain. Moreover, we find that both a finite concurrence and tripartite negativity is attained at much shorter time, making GHZ-distillation protocols feasible. Finally, we investigate the robustness of our protocol with respect to…
Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
2016
Abstract BaAg2Cu[VO4]2 contains Cu(II) S=1/2 ions on a distorted two-dimensional triangular lattice interconnected via non-magnetic [VO4] entities. DFT band structure calculations, quantum Monte-Carlo simulations, and high-field magnetization measurements show that the magnetism of this compound is determined by a superposition of ferromagnetic (FM) and antiferromagnetic (AFM) uniform spin-1/2 chains with nearest neighbor exchange couplings of J FM=−19 K and J AFM=9.5 K (A. Tsirlin, A. Möller, B. Lorenz, Y. Skourski, H. Rosner, Phys. Rev. B 85 (2012) 014401). Here we report the study of BaAg2Cu[VO4]2 by high-field/frequency electron spin resonance (HF-ESR) and nuclear magnetic resonance (NM…
Transfer of arbitrary two-qubit states via a spin chain
2015
We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 8…
Many-qubit quantum state transfer via spin chains
2015
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induc…
Asymptotic analysis of the form-factors of the quantum spin chains
2020
Since a long-time, the quantum integrable systems have remained an area where modern mathematical methods have given an access to interesting results in the study of physical systems. The exact computations, both numerical and asymptotic, of the correlation function is one of the most important subject of the theory of the quantum integrable models. In this context an approach based on the calculation of form factors has been proved to be a more effective one. In this thesis, we develop a new method based on the algebraic Bethe ansatz is proposed for the computation of the form-factors in thermodynamic limit. It is applied to and described in the context of isotropic XXX Heisenberg chain, w…